首页> 外文OA文献 >Structure of sets which are well approximated by zero sets of harmonic polynomials
【2h】

Structure of sets which are well approximated by zero sets of harmonic polynomials

机译:由零组谐波很好地近似的集合的结构   多项式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The zero sets of harmonic polynomials play a crucial role in the study of thefree boundary regularity problem for harmonic measure. In order to understandthe fine structure of these free boundaries a detailed study of the singularpoints of these zero sets is required. In this paper we study how "degree $k$points" sit inside zero sets of harmonic polynomials in $\mathbb R^n$ of degree$d$ (for all $n\geq 2$ and $1\leq k\leq d$) and inside sets that admitarbitrarily good local approximations by zero sets of harmonic polynomials. Weobtain a general structure theorem for the latter type of sets, including sharpHausdorff and Minkowski dimension estimates on the singular set of "degree $k$points" ($k\geq 2$) without proving uniqueness of blowups or aid of PDE methodssuch as monotonicity formulas. In addition, we show that in the presence of acertain topological separation condition, the sharp dimension estimates improveand depend on the parity of $k$. An application is given to the two-phase freeboundary regularity problem for harmonic measure below the continuous thresholdintroduced by Kenig and Toro.
机译:零次多项式多项式在谐波测量的自由边界正则性问题的研究中起着至关重要的作用。为了理解这些自由边界的精细结构,需要详细研究这些零集的奇点。在本文中,我们研究“度$ k $点”如何位于度d $$的$ \ mathbb R ^ n $的零个多项式多项式内(对于所有$ n \ geq 2 $和$ 1 \ leq k \ leq d $)和内部集合,这些集合通过零次多项式多项式可以很好地逼近局部。我们获得了后一种类型的集合的一般结构定理,其中包括对奇异的“度$ k $ points”($ k \ geq 2 $)集合的SharpHausdorff和Minkowski维数估计,而没有证明爆炸的唯一性或借助PDE方法(例如单调性)公式。此外,我们表明,在存在某些拓扑分离条件的情况下,精确的维估计会提高,并取决于$ k $的奇偶性。在Kenig和Toro提出的连续阈值以下,针对谐波测量的两相自由边界正则性问题给出了应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号