The zero sets of harmonic polynomials play a crucial role in the study of thefree boundary regularity problem for harmonic measure. In order to understandthe fine structure of these free boundaries a detailed study of the singularpoints of these zero sets is required. In this paper we study how "degree $k$points" sit inside zero sets of harmonic polynomials in $\mathbb R^n$ of degree$d$ (for all $n\geq 2$ and $1\leq k\leq d$) and inside sets that admitarbitrarily good local approximations by zero sets of harmonic polynomials. Weobtain a general structure theorem for the latter type of sets, including sharpHausdorff and Minkowski dimension estimates on the singular set of "degree $k$points" ($k\geq 2$) without proving uniqueness of blowups or aid of PDE methodssuch as monotonicity formulas. In addition, we show that in the presence of acertain topological separation condition, the sharp dimension estimates improveand depend on the parity of $k$. An application is given to the two-phase freeboundary regularity problem for harmonic measure below the continuous thresholdintroduced by Kenig and Toro.
展开▼
机译:零次多项式多项式在谐波测量的自由边界正则性问题的研究中起着至关重要的作用。为了理解这些自由边界的精细结构,需要详细研究这些零集的奇点。在本文中,我们研究“度$ k $点”如何位于度d $$的$ \ mathbb R ^ n $的零个多项式多项式内(对于所有$ n \ geq 2 $和$ 1 \ leq k \ leq d $)和内部集合,这些集合通过零次多项式多项式可以很好地逼近局部。我们获得了后一种类型的集合的一般结构定理,其中包括对奇异的“度$ k $ points”($ k \ geq 2 $)集合的SharpHausdorff和Minkowski维数估计,而没有证明爆炸的唯一性或借助PDE方法(例如单调性)公式。此外,我们表明,在存在某些拓扑分离条件的情况下,精确的维估计会提高,并取决于$ k $的奇偶性。在Kenig和Toro提出的连续阈值以下,针对谐波测量的两相自由边界正则性问题给出了应用。
展开▼